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The black-hole/strong-gravity team

e Chris Reynolds - team lead
e Mitch Begelman

e Andy Fabian

e Jon Miller

e James Reeves (next talk)

e Tod Strohmayer

e Kim Weaver

e Also stay tuned for Jane Turner’s talk



Outline

e The continued importance of broa

e Probing strong gravity

— Detailed study of constraints from orbital ti
line variability

— Scheme for searching from deviations from GR
e Black hole spins

— Measuring spins from time-averaged broad iron line

— Estimates for number of sources measurable

e Spanning the mass scale of black holes



Re-affirmed importance of broad iron lines
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MCG-6-30-15 (AGN) with Suzaku
(Miniutti et al. 2006)
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Other Suzaku results (from review by J.Reeves)




| : Probing Strong Gravity:
Rapid iron line variability

e Current broad iron line studies
already provide qualitative test
of GR!

— Confirm strong gravitational
redshifts close to BH

— Confirm relativistic velocities
close to BH

e But spacetime metric is
encoded in radial dependence of
V and z... time averaged line
profiles do not contain enough
information to probe this!

e Enter line variability...




Iron line profiles changes in
response to the echo of a
rapid X-ray flare across the

disk surface

“Relativistic 1ron
line reverberation™

Reynolds et al. (1999)
Young & Reynolds (2000)




“Iron line hot spots” from

e orbiting coronal flares

e corrugations in disk surface
e patchytonization structure

Iron line intensity as function of energy and time.
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Keplerian orbit-of a single “hot spot”
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Con-X simulation of single blobs
\
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Energy( key)
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Con-X simulation of single blobs
\
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Con-X simulation of single blobs
\
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Con-X simulation of single blobs
\
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Scheme fortesting GR

e Spin measurements are fundamen
aspects of the spacetime metric

ally measuring

AdaMrsin”® 0 > 2a*2Mrsin®0\ . , R
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e From iron line tracks, we can measure a spin a
number of different radii (assuming GR)...

— Powerful consistency check... inferred spin had bette
be independent of radius

— Many deviations from GR would produce a radial
dependence on the inferred spin



Con-X simulation of single blobs
\
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Con-X simulation of single blobs
\
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Power spectra from a phenomenological flare model
Zycki & Niedzwiecki (2005)




Power spectra from MHD simulation including relativistic
photon propagation effects (Armitage & CSR 2003)




Comparison of-simulated accretion flow with
test-particle orbits...
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. Probing Black Hole Spin
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Relevance of ISCO-confirmed by MHD simulations of

thin disks (at least for low-spins)
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Brenneman & Reynolds (2006)




Constellation-X simulation
1 million 2-10keV photons constralns a>0. 90 for amode,:0.95
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In how many AGN tan we measure spin?

Strategy : target known AGN on the basis of flux and the presence of a
broad iron line... “run down the log N - log S ¢
Canonical parameters...

— Need n;,=10° 2-10keV photons to determine spin to 109

— Assume f=0.5 of sources possess broad iron line

— Suppose we devote 10Ms to spin measurements

Using HEAO-A1 LogN-Logs...

\ 2/5 . a/r ; M N\ 3/5
Nige ~ 140 (L) (”f L ) (L L)
"\ 0.5 106 3 107 s

Need precusor survey to identify those sources with broad iron lines
— Con-X can obtain sufficient s/n on brightest 500+ AGN in 10Ms

— Some fraction of this precusor work will be conducted by XMM and
Suzaku beforehand



Why do we care-about spin?

Spinning black holes are potentially
powerful energy source

— Drive relativistic outflows/jets
(Blandford-Znajek effect)

— Enhance dissipation in inner regions of
accretion disk

— High-energy particle acceleration

Spin encodes formation and evolution
of the black hole

— Natal spins in stellar-mass BHs...
probe formation event

— Probe accretion/merger history in AGN







The “spin paradigm” of AGN

What underlies the radio-loud
/radio-quiet dichotomy?

Revised Spin Paradigm

— AGN radio loudness determined
by spin and Mdot

— Rapid BH spin is necessary but not
sufficient for powerful jets

— Postulate that bulge-dominated
galaxies have higher-spin than disk
dominated 7 & 5

: 4 -3 3 1
—  Low-Mdot... spin powered jet Eddington Ratio
- High-Mdot... jet quenched Sikora, Stawarz & Lasota (2006)

MCG-6 already suggests
breakdown of this hypothesis



Constellation-X“Key Projects”

e Con-X Strong Gravity Project

— Use iron line variability in
brightest ~10 AGN to probe
Kerr metric

e Con-X Spin Survey (10Ms)

— Measure black hole spin in 150-
300 AGN

e Con-X AGN Survey (precusor)

— Observe brightest 500+ AGN in
2-10keV sky (<10Ms)

— ldentify all objects with
relativistic iron lines




Beyond supermassive black holes...
spanning the%ss scales

e Can measure spins in stellar mass, intermediate mass, and
super-massive black holes!
— Time-averaged iron line profiles are insensitive to mass
(consequence of scale invariance of GR)
e Constrain mass function of IMBHs from modelin
disk radiation
— Compare with predictions for stellat-cluster core collapse, P
remnants and/or primodial BHs
e Constrain “large” scale extra dimensions from life-time
stellar-mass black holes

— Age constraints (e.g., from Con-X studies of mass transfer)
translate into constraints on size of extra dimension [due to
Increased Hawking evaporation]




Conclusions

e Constellation-X enables extrem
hole and strong gravity studies!

e Orbital iron line variability

— Even low s/n tracks provide good constraints
and spin

— Probe for deviations of GR from radial dependenc
Inferred spin parameter

e Constellation-X Spin Survey
— Can measure spin in 150-300 AGN in 10Ms
— Open up astrophysics of BH spin for the first time
— Need precusor survey to identify broad line sources

exciting black



Non-spinning black hole; i=30 degrees
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Assessment of constraints from orbiting blobs
(Chris Reynolds & Cole Miller)

e Current status
— Constructed libraries of orbital tracks
— Constructed “single blob” Con-X simulation
— Developed simple (grid-search) fitting algorith

— Obtain extremely good constraints from even mo
s/n tracks (r, a, phase, norm as free parameters;
assuming known mass & inclination).

e Future work
— More sophisticated fitting algorithms (MCMC).
— Assess spin constraints as function of radius, mass, flu
— Explicit demonstration of multiple track decomposition
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